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ABSTRACT

A proposed method of detecting, locating and sizing accidental fires,
based on the solution of an inverse heat transfer problem, is described.
The inverse heat transfer problem to be solved is that of the convective
heating of a compartment ceiling by the hot plume of combustion gases
rising from an accidental fire. The inverse problem solution algorithm
employs transient temperature data gathered at the ceiling of the
compartment to determine the location and heat release rate of the fire.
An evaluation of the proposed fire detection system, demonstrating the
limits on the accuracy of the inverse problem solution algorithm, is
presented. The evaluation involves operating the inverse problem
solution algorithm on transient temperature data from computer simu-
lated compartment fires. The simulated fire data are generated assuming
fires with quadratic growth rates, burning in a 20 m wide by 20 m deep
by 3 m high enclosure with a smooth, adiabatic ceiling. The accuracy of
the inverse problem solution algorithm in determining the location of a
fire is shown to be insensitive to the errors in the fire model used in the
forward problem solution, but sensitive to errors in the measured
temperature data. The accuracy of the heat release rate of the fire is
sensitive to both errors in the fire model and errors in the temperature
data. The validity of the use of computer simulated data in the
evaluation is verified with a second evaluation using fire data interpo-
lated from published measurements taken in large-scale compartment
fire burns. © 1997 Elsevier Science Ltd.

NOTATION
a Systematic error parameter: constant bias (s)
b Systematic error parameter: constant fraction

€1, €3, €3, ¢4 Correlation constants: eqn (8)
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Distance between sensors (m)

Gaussian distribution of random measurement error with
standard deviation o

Height of ceiling (m)

Length of compartment (m)

Number of sensors

Fire heat release rate (W)

Fire heat release rate reported for large-scale burns in Ref.
8 (W)

Simulated fire heat release rate (W)

Fire heat release rate predicted by inverse problem solu-
tion algorithm (W)

Radial distance from fire (m)

Sum of squares: eqn (4)

Temperature (K)

Ambient temperature (K)

Sensor activation temperature (K)

Predicted activation time of ith sensor (s)

Predicted elapsed time between activation of ith and first
sensors (s)

Measured activation time of ith sensor (s)

Measured elapsed time between activation of ith and first
sensors (s)

LAVENT simulated elapsed time between activation of ith
and first sensors (s)

Width of compartment (m)

Fire location (m)

Simulated fire location (m)

Fire location predicted by inverse problem solution algo-
rithm (m)

Fire growth rate (Ws™?)

Simulated fire growth rate (Ws™?)

Fire growth rate predicted by inverse problem solution
algorithm (W s™?)

Location error (m)

Heat release rate error ratio

Standard deviation of normally distributed random meas-
urement error
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1 INTRODUCTION

Industrial facilities such as warehouses and factory floors may combine
significant fire risks with minimal human monitoring for extended periods.
When accidental fires do occur in industrial settings the time the fire burns
undetected plays a crucial role in the destructiveness of the fire. As a
result there is a eritical need for an economical means to automatically
monitor work spaces and quickly determine the presence of a fire and
assess the threat to life and property.

Fire protection systems now in service, such as fusible link sprinklers,
can automatically detect and act to suppress accidental fires without
human intervention. However, these systems have only a rudimentary
ability to determine the location and size of the fire. Such systems lack the
intelligence to direct suppression measures (automatic or human), so as to
maximize fire-fighting effectiveness and minimize collateral damage from
water or chemical suppressants. Fire protection systems now being
developed are remedying this shortcoming by taking advantage of recent
advances in sensor and microprocessor technology. For example, re-
searchers have worked to exploit the power of microprocessors by
applying artificial neural networks,'” fuzzy logic,>* statistical methods®*
and expert systems’ to the fire detection problem. These new systems
attempt to incorporate intelligence into fire detection systems to enhance
their ability to detect a fire quickly, determine its threat and locate the
fire, so as to most effectively direct suppression.

Inverse problem solution methods, represent another suite of powerful
techniques that can be applied to the problem of fire detection. These
methods offer a new approach to introduce an element of intelligence into
fire detection systems. The theory of inverse heat transfer problems, is
quite well-developed. For example, the recovery of the location and/or
heat release rates of heat sources in thermally conducting solids,® in
radiating gases,” and in convective flow situations'” given a limited number
of discrete temperature or heat flux measurements has been demonstrated
by various workers.

The heat transfer problem of interest in the problem of fire detection is
the convective heating of a compartment ceiling by the buoyant plume
and resulting ceiling jet of hot combustion gases originating from an
accidental fire. The solution of the inverse heat transfer problem involves
comparing transient temperature information gathered by sensors situated
at discrete locations on the ceiling to predictions of those temperatures by
a numerical fire model. Minimizing the residuals between measured and
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predicted temperatures gives the most probable location and heat release
rate of the fire which generated the plume and ceiling jet.

In the proposed system transient temperature data are assumed to be
collected by n discrete temperature sensors distributed in a square grid
across the ceiling of the compartment. The data required by the proposed
system are the times at which each sensor reaches a predetermined target
temperature. Many potential sensor technologies could be candidates for
an actual prototype system. For example, conventional sensors such as
thermocouples, or fusible links would serve well as sources of data. Newer
technologies to monitor temperature such as fiber optic sensors''? are
rapidly appearing. Part II of the present work' presents the design and
operation of a fire detection system that uses a black and white video
camera to gather transient temperature data from color-changing,
temperature-sensitive sensors.

In the present work, Part I, the method of solution of the inverse fire
detection problem, the inverse problem solution algorithm, is developed.
The implementation of the inverse problem solution algorithm in a fire
detection system is then described. The limits on the performance of a fire
detection system based on the inverse problem solution are evaluated by
simulating the operation of the system using computer synthesized fire
data. The accuracy of the inverse problem solution based detection system
in determining the locations and the heat release rates of the simulated
fires is quantified on a statistical basis. Finally, the use of computer
simulated fire data in the evaluation of the inverse problem solution
algorithm, is validated by comparing the results of the evaluation with a
second evaluation based on fire data interpolated from published measu-
rements taken in large-scale experimental compartment fire burns. Part II
of this work" completes the study, by describing how the inverse problem
solution algorithm can be implemented in a working prototype. In the
prototype system, the transient temperature information gathered by a
video camera monitoring color-changing, temperature-sensitive sensors is
used as data in the inverse problem solution algorithm described in the
present paper. In addition, Part II reports the results of an evaluation of
the accuracy of the prototype in determining the location and heat release
rate of small flame sources in reduced-scale fire experiments.

2 SYSTEM DESCRIPTION

The inverse fire detection problem is illustrated in Fig. 1. If a fire is
accidentally ignited in a compartment, a buoyant plume of hot combustion
gases will be generated. The buoyant plume will rise to the ceiling of the
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Fig. 1. The inverse fire detection problem.

compartment and upon reaching the ceiling turn and flow radially outward
as a ceiling jet. As the ceiling jet spreads radially, the ceiling will be
convectively heated. Temperature sensors, T1 through T6, placed at
discrete locations on or near the ceiling will also be heated by the ceiling
jet. If the temperature sensors are such that they are activated at a
temperature between the ceiling jet temperature and ambient tempera-
ture, then those sensors will be activated one by one as the ceiling jet
spreads radially outward. The inverse problem to be solved is to
determine the location, (x,y), and heat release rate, @, of the fire, given
the times at which individual temperature sensors reach their activation
temperature.

2.1 Inverse problem solution algorithm

The problem of locating a fire and determining its growth rate can be
formally posed as an inverse problem in which the times of activation, ¢,
of n ceiling mounted sensors (where i =1, n) are used as data to find two
unknown parameters determining the fire location: x, y and one unknown
parameter determining the fire growth rate: a. The location of the fire is
described by the Cartesian coordinates, (x,y), where the fire is assumed to
lie in the plane of the compartment floor. The fire growth rate is
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determined by the parameter a, which follows from the functional form of
the fire heat release rate assumed in the present work:

Q= )

The quadratic form is chosen following Heskestad’s recommendation for
the initial stages of fire growth.'* Here Q is the fire’s convective heat
release rate in W, and ¢ is the elapsed time from the ignition of the fire in
seconds. The parameter to be found, a, is seen to have units of Ws™2 The
problem is thus one of parameter estimation, with three parameters to be
found. It is important to note that the determination of three parameters
by inverse problem solution requires no less than four data.

Solution of the inverse problem involves two steps: first prediction of
the transient temperature field in the compartment using a numerical fire
model and second minimization of the residuals between measured and
predicted temperatures to determine the most probable location and heat
release rate for the fire. The first step, prediction of the temperature field
given the heat source, is commonly referred to as the solution of the
forward problem. The second step, comparison of transient temperature
data gathered by sensors to predictions of those temperatures by the
numerical fire model to obtain location and heat release rate information
about the fire, completes the solution of the inverse problem.

In the present study the solution of the forward problem is found using
the compartment fire model LAVENT."”” LAVENT is a two-zone com-
partment fire model which employs semi-empirical models of the buoyant
plume and ceiling jet in order to compute convective heat fluxes from a
fire to the ceiling of a compartment. Several assumptions made in the
development of LAVENT pose significant restrictions on the problem
considered here.

First, LAVENT assumes that the compartment air is quiescent. This
assumption implies that room air velocities due to forced air ventilation or
induced ventilation from open doors and windows are much smaller than
the gas velocities in the buoyant plume rising from the fire. Second,
LAVENT assumes that interactions between the plume and side wall are
negligible. This assumption limits LAVENT to simulations of fires that are
a distance of at least 4/2 from the compartment side walls. These first two
assumptions ensure that both the buoyant plume and ceiling jet remain
axially symmetric about a vertical line drawn through the fire. In addition,
LAVENT is useful only for simulations in the early stages of a
compartment fire, before the top of the flame begins to reach the
compartment ceiling.

LAVENT assumes that the compartments considered have a plan aspect
ratio not far from unity. Compartments need not be square, but must
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have an aspect ratio in the range 1=//w =<2. As a result fires in long
hallways or corridors can not be simulated. The compartment considered
must have a smooth ceiling, without solid beams or other architectural
elements which would pose barriers to the flow of the ceiling jet radiating
from the fire plume.

Forward problem solutions are found for a set of many fire scenarios.
Each fire scenario consists of a fire with a given location and growth rate,
(x,y,a), in the relevant compartment geometry. The zone fire model
LAVENT, is employed to predict the transient temperature field across
the compartment ceiling for each fire scenario (x,y,a) in the set. Using the
transient temperature solution for each scenario from LAVENT, the
times at which each sensor will be activated can be determined, given both
the locations of the temperature-sensitive sensors and their activation
temperature. The predicted activation time for each sensor is then defined
to be the elapsed time between the activation times of the particular
sensor and the first sensor activated:

Li=t—1 (2)

Note that n sensor activation times, ¢, yield (n —1) predicted activation
times, ¢,;, since the predicted activation time of the first sensor is always
zero.

The collection of predicted activation times covering all possible fire
scenarios constitutes the database of forward problem solutions used for
the inverse problem solution. In the present study a complete set of fire
scenarios consists of eight discrete fire growth rates in the range
0-001 < a <0-06 kW s™2, and 400 fire locations situated on a square grid at
increments of 0-05d (where d is the distance between sensors) in x and y.
Due to symmetry only 66 of the 400 fire locations are unique. Therefore, a
complete set of forward problem solutions involves a database of only 528
fire scenarios. Forward problem solutions can be pre-calculated and stored
'in computer memory. For each different compartment geometry, size, or
set of detector locations a separate set of forward problem solutions must
be generated and stored.

The solutions are stored in the form of the locations and activation
times of the first five sensors to be set off by the fire: (x;,y.t.;) where
i=1-5. Activation times, f, for five sensors are required, since five
activation times yield four predicted activation times, ¢,,. Four predicted
activation times are the minimum number of data required to solve the
inverse problem for the three unknown parameters, (x,y,a). In general, if
more data were used in the inverse problem solution, better estimates of
the unknown parameters would result.

Given a complete set of forward solutions, the second step of the
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inverse problem solution algorithm can be implemented: the comparison
of measured and predicted transient temperature data. The data required
for the inverse problem solution are the times at which individual sensors
are activated as a result of the plume of hot gases rising from the fire.
Measured activation times for the first five sensors activated (: =1-5) in a
given fire scenario are required, where the measured activation time for
each sensor is taken as the elapsed time from the time the first sensor is
activated:

By,
s
I
ad
]
~>

3)

Once again, note that n sensor activation times, ¢;, yield (n — 1) measured
activation times, ¢, ;.

The inversion algorithm proceeds by subtracting measured activation

times from predicted activation times and then summing the squares of
the differences:

§= 2, (tas = 0}’ (4)

The solution to the inverse problem is taken to be the values of the
parameters x, y and « for the fire scenario which minimizes the sum of
squares, S, over the complete set of fire scenarios. The minimum of § is
found through the technique of exhaustive search. The sum of squares, S,
is calculated for each of the 528 fire scenarios in a complete set and the
minimum value found by comparing the values of S determined for each
scenario. In those cases where two or more fire scenarios produce equal
minima of S, the average of the respective values of x, y and a are taken
as the solution.

The solution of an inverse problem proceeds by matching measured
data with values predicted by a forward problem model. As a result, the
accuracy of the inverse problem solution is closely tied to the accuracy of
the forward problem model. In the present study, it is the accuracy of the
compartment fire zone model, LAVENT, in predicting the heat and mass
transfer from a fire to the compartment ceiling via the buoyant fire plume
and the resulting ceiling jet, that is pivotal in the solution of the inverse
fire detection problem.

3 INVERSE PROBLEM SOLUTION ALGORITHM
EVALUATION

Two tests were undertaken to evaluate the inverse problem solutior
algorithm. First, the accuracy of the algorithm was evaluated using
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computer simulated fire data. Second, the use of the computer simulated
data to test the algorithm was validated using fire data interpolated from
measurements taken in full scale experimental burns.

The accuracy of the inverse problem solution algorithm in locating and
sizing accidental fires largely depends on the algorithm’s sensitivity to two
kinds of error: random errors in the transient temperature measurements
and the systematic errors in the forward problem solution. Random errors
in sensor activation times must be expected regardless of the type of
sensor used to gathered the data required by the inversion algorithm.
Likewise, any fire model used to produce the forward problem solution
will have associated with it some limitations, assumptions, or simplifica-
tions which will result in systematic errors in that solution.

To evaluate the performance of the inverse problem solution algorithm,
the algorithm was exercised on test cases consisting of computer simulated
fire data. Quantification of the effect of the errors described above, was
accomplished by corrupting the original simulated fire data by adding to
the data random and systematic errors of known magnitude. The fire
location and heat release rate predicted by the inverse problem solution
algorithm using the corrupted fire data (data with errors) was then
compared to the fire location and heat release rate which was assumed to
produce the original uncorrupted fire data.

3.1 Fire detection system simulation

The evaluation began by simulating a compartment fire with given
location and growth rate (x,y,a) using the zone fire model LAVENT.
Sensor activation times were determined given the sensor location and the
transient temperature field at the compartment ceiling calculated by
LAVENT for a fire with the assumed location and growth rate.

All simulations were run assuming a compartment similar to the
warehouse used for the large-scale test burns at the Factory Mutual
Research Center reported by Heskestad and Delichatsios.'® The compart-
ment was taken to be 3 m high, 20 m wide and 20 m deep, with a smooth,
insulated ceiling. The compartment was assumed to be completely
enclosed, without sources of ventilation, so that the air in the compart-
ment was quiescent.

The compartment geometry met the restriction on LAVENT that
compartments must have aspect ratios in the range 1=//w=<2. The
smooth ceiling met the restriction that there be no architectural elements
which would pose a barrier to the flow of the ceiling jet. The assumption
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of quiescent air in the compartment was required, because LAVENT i
based on the assumption that room air velocities are much smaller tha
the gas velocities of the buoyant plume rising from the fire. Plum
velocities for the fire scenarios simulated in the present work were on the
order of Ims™".

LAVENT simulations were continued only until the fires were detected
located and sized. During the study, it was not necessary to run any
simulation longer than 3min from the time of ignition and no fire
simulated grew larger than 100 kW, before being detected and located. A
a consequence of the fact that the present work focused on early fire
detection, assumptions limiting LAVENT to simulations of the early
stages of fire growth were not significantly restrictive.

The ambient temperature in the compartment was taken to be constant
at T,n, =300 K. The temperature sensors for the detection system were
assumed to be distributed on a square grid, spaced three meters apart.
The activation temperature for all sensors was selected to be 7, =311K.
The sensors were assumed to hang in the hottest part of the ceiling jet,
between 0 and 10cm from the ceiling. The sensors were taken to have
negligibly small thermal mass, so that their time response would be
essentially instantaneous. However, the time of activation was always
rounded to the nearest second, to account for the finite speed of data
acquisition systems.

3.2 Error simulation

To enable the quantification of the effects of uncertainty that would
inevitably arise in a real fire detection system, errors were added to the
sensor activation times determined from the LAVENT simulated fire
data. In this way corrupted data were produced which more closely
resembled sensor activation times that would be measured during a real
fire, than the original LAVENT simulated data.

Two types of error were added to the LAVENT simulated data. To
account for limitations or inaccuracy inherent in the fire model used to
produce the forward solution, a systematic error was added to the
simulated sensor activation times. The systematic model error was
assumed to be composed of a constant bias and a component which grew
linearly in elapsed time. To account for uncertainty in the sensor
activation time measurements, a random error was also added to the
LAVENT simulated activation times. The random measurement errors,
were assumed to follow a Gaussian distribution with a mean value of zero.
Adding the systematic and random errors to the original LAVENT
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simulation activation time for the ith sensor, f .v,, the corrupted
activation time of the ith sensor, ¢,; could be calculated:

;a.i = ;LAVJ + (a + b?LAV.i) + G(U') (5)

where a and b are constants characterizing systematic error and G(o) is a
random number chosen from a normal distribution with standard devia-
tion o. Note that the parameter a has units of seconds and represents a
constant time bias. The parameter b, which has a dimensionless value
between zero and unity, represents an error which is always a constant
fraction of the elapsed time.

3.3 Inverse algorithm test

A test of the inverse problem solution algorithm was run by randomly
selecting a fire location, (Xum.Ysim), in the range 0<xg,<d, 0<y;.<d
and a fire growth rate, a,,, in the range 0-001 < ag, <0-06kWs™2,
LAVENT was run to simulate the transient temperature history at the
compartment ceiling for the given fire location and growth rate. The
LAVENT generated transient temperatures were then used to determine
sensor activation times, f av,, for the five sensors nearest to the fire
(i =1-5). Random and systematic errors were added to the LAVENT
simulated sensor activation times, to produce the corrupted sensor
activation times, f,;,, using eqn (5). The inverse problem solution
algorithm was then employed, using the corrupted sensor activation times,
t.i, as data, to predict a fire location and heat release rate,
(xpred,y;)red,apred)~

The accuracy of the inverse problem solution algorithm was scored by
calculating the errors in the algorithm’s predictions of the fire location and
heat release rate. The location error, .., was defined to be the distance
between the fire location (X,.q,Yerea) predicted by the inverse problem
solution algorithm and the location (xi., yum) originally selected to
produce the simulated sensor times to activation:

Eyoc = \/(xpred - xsim)z + (ypred - ysim)2 (6)

where £, was measured in centimeters. For a perfect fire detection system
with no error, the location error was zero, &, =0cm.

The heat release rate error ratio, gy, was defined to be the ratio of the
heat release rate of the fire, predicted by the inverse problem solution
algorithm, Q,.4(f,s), over the heat release rate of the fire originally
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simulated, Q.n(t.5), where both heat release rates were calculated at the
time of the activation of the fifth sensor:

€0 = Qprea(tas) Qsim(ta.s) (7)

As defined, the heat release rate error ratio was dimensionless. Note that
for cases where the predicted heat release rate, Q.4(t,s), and the
simulated heat release rate, Qqn(t,s), diverged, the value of heat release
rate error ratio, £, shifted away from unity. Heat release rate error ratios
less than unity meant that the inverse problem solution algorithm had
underpredicted the fire size, while ratios greater than unity meant that the
algorithm had overpredicted fire size.

The inverse problem solution algorithm was run using data from 1000
different simulated fires to provide an ensemble of results at each set of
test conditions. The location, (x,y) of each of the simulated fires was
randomly chosen, while the growth rate, «, of the fires was kept constant
over all of the 1000 simulated runs. A set of test conditions consisted of
the specified magnitudes of random error and systematic error added to
the simulated fire data, along with the fire growth rate. Since random
error is determined by the standard deviation, o, of the Gaussian
distribution G(o), while systematic error is controlled by the constants b
and ¢ in egn (5) a test condition is specified by the set of parameters: («,
o, b, ¢). Location and heat release rate error statistics for each test
condition were determined from the ensemble of errors resulting from the
1000 simulated test fire runs.

3.4 Validation of the inverse algorithm evaluation

The usefulness of the results of the evaluation of the inverse problem
solution algorithm just described, depends upon the degree to which the
computer simulated fire data used in the evaluation resembles real data
produced by real fires. To validate the use of simulated fire data in the
evaluation of the algorithm and to verify that such an evaluation yields
realistic results, a paralle] evaluation based on experimental measure-
ments was undertaken. Measurements made during large scale test burns
of wood crib fires at the Factory Mutual Research Center by Heskestad
and Delichatsios'® provided a set of realistic fire data. In that paper,
measurements of ceiling jet temperatures were given versus time and
radius from the fires, for eight different fires. Unfortunately, the ceiling jet
temperatures reported in Heskestad and Delichatsios'® were given at only
six radial locations. As a result, a means to ‘interpolate’ transient
temperature data, at radial distances between those distances for which
Heskestad and Delichatsios'® reported measurements, was employed.

The interpolation of transient temperature data from the
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measurements was accomplished by fitting the measurements to a general
form of the correlation given as eqn (1) in Heskestad and Delichatsios.'®

t(ry=c(T(r)— Y;mb):"f“ + (T (r) = Tomo)(r/h) + c5(r/h) + ¢4 (8)

where T(r) is the ceiling jet temperature at radius r, (r) is time elapsed
from the start of the fire, 4 is the ceiling height, and ¢,, ¢,, ¢; and ¢, are
constants. In the present work, elapsed time is chosen as the dependent
variable and temperature as the independent variable, because the
inversion algorithm uses as data the times at which sensors at various radii
from the fire plume reach their activation temperature. Once the
correlation, eqn (8), was fitted to the measurements from Heskestad and
Delichatsios'® using least squares, residuals for the data with respect to the
correlation were calculated. The residuals were tabulated by counting the
number of residuals that fell into bins between the lowest and highest
values of the residuals (—12<r<10s), where each bin was 1s wide.
Figure 2 shows the resulting probability density function for the residuals.
For comparison, a Gaussian distribution with a mean value of Os and
standard deviation of 4-7 s is shown on the same figure.

Using eqn (8) with the appropriate constants c,, ¢;, ¢ and c,, and the
residual pdf given in Fig. 2, it was possible to generate new time versus
temperature data. The new data was generated by using the correlation to
calculate a time, #(r), at which a given temperature, 7(r), would be
reached at any radial position, r. Values randomly chosen from the
residual pdf (Fig. 2) were then added to the time, ¢(r), resulting from the

0.15

—— Residuals
- Gausslan Distribution

0.10 ~

Probability

0.05 -

0.00 +-
12108 6 4 -2 0 2 4 6 8 1012
Residuals (s)

Fig. 2. Residual probability distribution function determined from the difference between
large-scale fire test data taken from Ref. 16 and eqn (8). A Gaussian distribution with
mean value 0's, and standard deviation o =4-7 s is shown for comparison.
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correlation. Time versus temperature data generated in this way would be
indistinguishable from the original measurements reported in Heskestad
and Delichatsios.'®

4 RESULTS
4.1 Fire location accuracy

The accuracy of the inverse problem solution algorithm in locating fires
can be assessed by referring to Figs 3 and 4, where statistics on fire
location error from 1000 simulated test fires are shown. Consider first Fig.
3(a, b), where the effect of random errors and systematic errors on the
inversion algorithm’s accuracy in predicting fire location is illustrated. In
the figures, probability density functions for location error are shown for
both slow-growing (a =2-98 Ws™?) and fast-growing (a =42-6 Ws™?)
fires given. Location errors are reported as the distance between predicted
and actual fire locations and given in centimeters.

The effect of random error is shown in Fig. 3(a). In that figure, where
no systematic error has been added (LAVENT is assumed to be a
‘perfect’ fire model), probability density functions of location error for
simulations of fires with no random error (o =0s) and with moderate
random error (o =5s), are given. With no random error (o =0s),
although most fires are located exactly, a few fires are found with location
errors of as much as 30 cm. This small location error is due to the fact that
sensor activation times are rounded off to the nearest second, to account
for the finite speed of the data acquisition equipment. As random
measurement error is increased from o =0s to o =5 s, however, errors in
the fire location predicted by the inverse problem solution algorithm begin
to increase more significantly. The effect is seen to be greater for
fast-growing fires than for slow-growing fires.

Figure 3(b) shows the effect of systematic or model error on the
accuracy of the inversion algorithm to predict the fire location. Pdfs of
location error are given for cases of fire data for slow-growing fires with
systematic error corresponding to (1) a=0s,b =0, (2) a=40s, b =0, and
for fast-growing fires with systematic error corresponding to (1) a =0s,
b=0,(2)a=0s,b=0-6. In all cases an added random error of o =5s is
included. Location errors are seen to be larger for fast-growing fires than
for slow-growing fires as in Fig. 3(a). However, in contrast to the previous
case, fire location errors do not increase as systematic model error
increases. In fact, for the fast-growing fires, location errors decrease
slightly when the parameter b is increased. This conclusion can be seen
more clearly in Fig. 4(a,b).
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Fig. 3. (a) Location error pdfs for slow and fast-growing fires: a =2-98 W s”? and
a =42-6 Ws™? at two levels of random error: ¢ =0s and o =55, and no systematic error.

(b) Location error pdfs for slow and fast-growing fires: a =2-98 Ws?and a =426 Ws~

2

at three levels of systematic error: a=0s, b = 0-0; a=40s, b =00 a=0s, b = 0-6 and

random error ¢ =3s.
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Fig. 4. (a) Median location error with 95% confidence interval versus random error, for
fast-growing fires: a =42.6 Ws™ for three levels of systematic error: a =0s, b =00;
a=20s, b=0-0; and a =40s, b =0-0. (b) Median location error with 95% confidence
interval versus random error, for fast-growing fires: a =42-6 Ws™” for three levels of
systematic error: a =0s, b =0:0; a =0s, b =0-2; and a =05, b = 0-40.
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“In Fig. 4(a,b) both the median error and the 95% confidence intervals
about the median error in fire locations predicted by the inverse problem
solution algorithm are plotted versus random error standard deviation, o.
Only results for fast-growing fires (@ = 42-6 W s™?) are shown. The median
location error represents an error greater than the location errors found
for 50%, or 500 out of 1000 test fires. Likewise, the 95% confidence
interval represents a location error greater than the location errors for
95%, or 950 out of 1000 fires in a test run. In Fig. 4(a) location error is
plotted for three cases of systematic error: a =0, 20, 40s with b =0-0
while in Fig. 4(b) location error is plotted for three other cases of
systematic error: a =0s with b =0, 0-2, 0-4. Both figures clearly demons-
trate that varying systematic error by changing parameters a and b has
little effect on either the median or the 95% confidence intervals for
location errors. On the other hand, increasing the random error standard
deviation, o, causes monotonic increases in both the inversion algorithm’s
median location error and 95% confidence interval on location error.

The insensitivity of inverse algorithm location error to systematic model
error and the sensitivity of the location error to random measurement
error are both consequences of the fact that the algorithm predicts fire
location primarily on the basis of the order in which sensors are activated.
For example, the inverse algorithm will always predict the fire to be
closest to the sensor which is activated first, the fire to be next closest the
sensor activated second and so on. The algorithm predicts fire location
secondarily on the relative elapsed times between activation of sensors.
That is, the longer it takes for a sensor to activated, the farther that sensor
must be from the fire. All radially symmetric compartment fire models will
predict the same sequence of sensor activations for a given fire location.
All radially symmetric compartment fire models will predict that the
greater the distance from the fire to any given sensor the greater the
elapsed time until the sensor is activated. For these reasons, the particular
fire model used in the inverse problem solution algorithm will have little
effect on the fire location predicted. In the same way, systematic errors in
the fire model will have little effect on fire location errors, as seen in Fig.
4(a,b). :

The effect of random errors is quite different. Random measurement
errors will cause the relative times of activation of sensors to vary from
their ‘true’ values. A random measurement error causing the apparent
activation time of a sensor to be sooner than the actual elapsed time will
shift the predicted fire location closer to that sensor. A random error
causing a sensor activation time to appear later than the actual time will
shift the predicted fire location away from that sensor. In the case of large
random measurement errors the sequence of two sensor activations may
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even be reversed. The increase in fire location error with1 increased
random measurement errors seen in Fig. 4(a,b) reflects these meechanisms.

4.2 Fire heat release rate accuracy

The effect of random and systematic errors on the accuracy of the
inversion algorithm in predicting fire heat release rates forr fast- and
slow-growing fires is shown in Fig. 5(a,b). In the figures, heat redlease rate
error ratio probability density functions are given, where heat reflease rate
error ratio is reported as the heat release rate predicted by the: inversion
algorithm, divided by the actual fire’s heat release rate, at the titme of the
fifth sensor activation. The effect of random error is shown im Fig. 5(a)
where heat release rate error ratio pdfs are given for fire data with ¢ =0
and S5s, and with no systematic error (perfect fire model). IIncreasing
random measurement error is seen to have little effect on the peeak of the
heat release rate error ratio pdf, while causing the width of tthe pdf to
grow. The increase in pdf width is larger for fast-growing firess than for
slow-growing fires. For example, the pdf for the fast-growing firess spreads
from 0-5 to 1-9, with a peak at 1-0, while the pdf for the slow-gr@wing fires
spreads only from 0-7 to 1-4, with a peak at 0-95.

The effect of systematic error is shown in Fig. 5(b). In the figgure, heat
release rate error ratio pdfs are given for cases of systemmtic error
corresponding to slow-growing fires with: (1) a =0s, b =0, (2)) a =40s,
b =0, (3) and fast-growing fires with: (1) a=0s,b =0, (2) a =0, b =06,
for fire data with added random error of o =5s. Increasing systematic
error causes the peak of the heat release rate error ratio pdf to shift away
from unity to smaller values. The shift in the peak of the pdf is greater for
fast-growing fires, with the peak of the pdf for the fast-growing fires
shifting from 1-0 to 0-35 while the peak of the pdf for slow-grawing fires
shifts only from 0-95 to 0-6. Interestingly, the width of the pdf appears to
decrease with increasing systematic error for both fast- and slow-growing
fires. For example the pdf for the fast-growing fires covers froom®-5 to 2-0,
for the case with no systematic error. Introducing a systemmmtic error
characterized by b = 0-6 shrinks the pdf so that it stretches onlyy from 0-2
to 0-8. Likewise for slow-growing fires with no systematic errar, the pdf
covers from 0-7 to 1-5. Introducing a systematic error charactterized by
a =40, shrinks the pdf, so that it covers only from 0-45 to 0-9.. However,
even though the absolute width of the heat release rate error pdf
decreases with increased systematic error, the width of the hezat release
rate error ratio pdf normalized by the mean value of the heat redlease rate
error ratio remains constant. This can be seen in Fig. 6(a,b).
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(a) Heat release rate error pdfs for slow- and fast-growing fires: a =2-98 Ws™?
and a =42-6 Ws 2 at two levels of random error: ¢ =05 and o =5, and no systematic
error. (b) Heat release rate error pdfs for slow- and fast-growing fires: @ =2-98 Ws™2 and
@ =42-6 Ws™? at three levels of systematic error: a =0s, b =0-0; a =405, b =0:0; a =0s,
= (-6 and random error o =35s.




342 R. F. Richards et al.

—~
1Y
-~

—O— ¢ =0 s, Median error
-0~ o=5s, Median error
Sl e & g =9 s, Median error

J —— o6=0s,95%emror e S~o
----- o=5s, 95% error
-~ o=9s, 95% error

Heat Release Rate Error Ratio, €q

0.1 — T T
0 10 20 30 40
Systematic Error Parameter, a (s)
(b)
¢ = 0 s, Median error
S o =5 s, Median error

-
e

{ o=0s, 95% error

o=5s, 95% error

c=9s, 95% error

0-1 M T T T v T M

0.0 0.1 0.2 0.3 0.4

Systematic Error Parameter, b

Heat Release Rate Error Ratio, £,

Fig. 6. (a) Median heat release rate error with 95% confidence interval versus systematic

error parameter, a, for fast-growing fires: @ = 42-6 W s™? for three levels of random error:

oc=0s, 0=5s and o=9s. (b) Median heat release rate error with 95% confidence

interval versus systematic error parameter, b, for fast-growing fires: a =42-6 Ws™? for
three levels of random error: ¢ =0s, ¢ =5s and 0 =9s.




Fire detection, location, and heat release rate—I 343

Figure 6(a,b) gives semi-logarithmic plots of median error and 95%
confidence intervals about the median error for predicted heat release rate
error ratio versus systematic error. In Fig. 6(a) heat release rate error
ratio is plotted on a log scale against the systematic error parameter, a,
(b =0) for three cases of random error: o =0, 5, 9s. In Fig. 6(b) heat
release rate error is plotted on a log scale against the systematic error
parameter, b, (a = 0) for the same three cases of random error: o =0, 5,
9s. In both figures results are shown for fast-growing fires (a =
42-6 W s™?) only.

Figure 6(a,b) shows a very different behavior for heat release rate errors
than Fig. 4(a,b) showed for location errors for the inverse problem
solution algorithm. Recall that Fig. 4(a,b) showed that location errors
were sensitive to random measurement errors, but insensitive to systema-
tic errors in the fire model. Figure 6(a,b) shows that median errors in heat
release rate are sensitive to systematic model error (changes in either a or
b) and are insensitive to random measurement error (changes in o). In
contrast, the 95% confidence intervals on heat release rate error, as seen
on the semi-log plots, are insensitive to systematic model error (changes in
a or b) and are sensitive to random measurement error (changes in o). In
other words, increasing systematic model error (parameters a and b) will
cause the peak of the heat release rate error pdf to shift to successively
smaller values of g,, where the smaller the value of &, the more the
inverse problem solution algorithm is underpredicting the fire size. At the
same time, increasing systematic model error will have no effect on the
width of the pdf as seen on the semi-log plot, where a constant width
implies a constant ratio between the median error ratio and the 95% error
ratio. In contrast, increasing random measurement error will have no
effect on the position of the peak of the heat release rate error pdf, while
causing the width of the pdf to increase.

The accuracy of fire heat release rates predicted by the inverse problem
solution algorithm is tied closely to the accuracy of the forward model (in
the present case: LAVENT) used by the algorithm. The accuracy of fire
locations predicted by the inverse algorithm does not depend on the
accuracy of the forward model. If the forward model overpredicts
compartment ceiling temperatures then the inverse problem solution
algorithm will consistently underpredict fire heat release rate, but may still
accurately predict the fire location. This is precisely the meaning of Fig.
4(a,b) and Fig. 6(a,b). The dependence of fire heat release rate predictions
on forward model accuracy, in contrast to the independence of fire
location predictions from forward model accuracy, makes the determina-
tion of fire size a much more difficult task than the determination of fire
location, for a practical fire detection system.
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Fig. 7. Sensor time to activation pdfs for first and fifth sensors.

4.3 Speed of fire detection

The speed with which the proposed fire detection system can locate and
size a fire is of interest. Figure 7 shows probability density functions for
activation times of the first and fifth sensors for a slow-growing fire
(a =2-98 Ws?) and a fast-growing fire (a = 42:6 W s?) for 1000 test runs.
Upon activation of the first sensor the system has its first evidence of the
fire. Upon activation of the fifth sensor the inversion algorithm has
sufficient information to locate the fire. The slow-growing fire is seen to be
first detected within 2min and located and sized within 3min. The
fast-growing fire is first detected within 30s and located and sized within
50s.

Figure 7 also demonstrates why location and heat release rate errors are
greater for fast-growing fires than for slow-growing fires given equal
magnitudes of random and systematic error. Consider, for example, a case
in which sensor activation times for both fast- and slow-growing fires have
associated with them random error with o =35s. The mean time of
activation of the first sensor is 19's for the fast-growing fire and 37s for the
slow-growing fire. The random error then is 26% of the activation time for
the fast-growing fire, but only 14% of the activation time for the
slow-growing fire. Likewise, a systematic error consisting of a constant
bias of a =35s would constitute a much larger fraction of the sensor
activation times for fast-growing fires than for slow-growing fires. It is the
ratio of activation time errors to the activation times themselves and not
the absolute magnitude of the errors which controls the accuracy of the
inverse problem solution algorithm. This ratio will always be larger for
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fast-growing fires than for slow-growing fires given equal random and
systematic errors. Figure 3(a,b) and Fig. 5(a,b) reflect this fact.

4.4 Evaluation validation

The validity of the use of simulated fire data in the evaluation of the
inverse problem solution algorithm was investigated. Results of the
evaluation using simulated data were compared to an evaluation using
data interpolated from experimental measurements taken in a large-scale
compartment fire test, as reported in Heskestad and Delichatsios.'

The method of interpolation of data from actual measurements using
the correlation given as eqn (8) in conjunction with the time residual pdf
has been described in Section 3.4. It is important to emphasize here that
although the interpolated sensor activation time data are not experimental
measurements, the data were developed directly from, and closely
resemble, the original measurements. To judge how closely the interpo-
lated data resemble the original data from Heskestad and Delichatsios,'® a
comparison between some of the original measurements and the interpo-
lated data is given in Fig. 8. In the figure, data from Heskestad and
Delichatsios'® in the form of time versus temperature measurements for
three radial locations on the ceiling above a fast-growing (a = 42-:6 Ws™')
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Fig. 8. Comparison of experimental measurements taken from Ref. 16 and interpolated
data produced using eqn (8) and the residual probability distribution function.
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compartment fire are plotted with filled symbols. On the same figure, data
interpolated from the experimental measurements using the method of
Section 3.4, are plotted with open symbols. The comparison between the
interpolated data and the original measurements from which they were
derived is seen to be quite good.

Results of the evaluation of the inverse problem solution algorithm
based on interpolated data, similar to the data shown in Fig. 8, are given
in Fig. 9(a,b), alongside results from an evaluation using computer
simulated data. The figures show pdfs for location errors and heat release
rate error ratios for the inverse problem solution algorithm, when locating
and sizing 1000 randomly-located, fast-growing fires (a =426 Ws™).
Solid lines show results from the evaluation using interpolated fire data.
Dashed lines show results from the evaluation using computer simulated
fire data. The computer simulated data, produced using LAVENT
contains random error with o =5 s and systematic error with a =20s and
b =0-20. Figure 9(a,b) shows that location errors and heat release rate
error ratios found from an evaluation of the inverse algorithm based on
LAVENT synthesized data are essentially indistinguishable from results of
an evaluation of the inverse algorithm based on fire data interpolated
from experimental measurements. In short, the use of computer simulated
data will lead to realistic and useful estimates of the fire detection system’s
accuracy, as long as random and systematic errors of appropriate
magnitude are included in the data.

The magnitudes of location and heat release rate ratio errors seen in
Fig. 9(a,b) are instructive. Recall that the figures are based on the
assumption of a fast-growing fire in a large (20X 20X 3 m) warehouse.
Under these conditions, the inverse problem solution algorithm was
able to locate 95% of the fires within 70cm (2/3d) and 50% within
30cm (d/3). Location accuracy for the inverse problem solution algor-
ithm is quite good. The accuracy of the inverse algorithm in determining
fire heat release rate is not as good. The inverse algorithm was able
to determine the heat release rate of 95% of the fires to within
a factor of five (g, =02) and 50% of the fires within a factor
of three (e, =0-33). However, the heat release rate error ratios given
in Fig. 9(b) are probably artificially low. The values of g, (where
€0 = Qpreal Qo) are too low because the values of actual heat
release rate, Q.., on which they are based are most likely too high.
The values of actual heat release rate taken from Heskestad and
Delichatsios'® were determined by multiplying a measured rate of
change of fuel mass by an estimated heat of combustion for the
fuel. As a consequence a combustion efficiency of less than 100% in the
test fire would result in an overestimate of Q,. and an underestimate of
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5 CONCLUSIONS

A proposed fire detection system based on the use of an inverse heat
transfer problem solution algorithm capable of determining the location
and heat release rate of an accidental compartment fire, has been
described. The inverse problem solution algorithm uses as data the times
of activation of temperature sensors distributed in an array on the ceiling
of the compartment. The inverse problem solution algorithm then uses the
fire model LAVENT as a forward model to predict the times of activation
of the sensors for a given fire location and growth rate. The accidental fire
i1s taken to be at the location and growth rate which minimizes the sum of
squares of the residuals of measured and predicted sensor times of
activation.

An evaluation of the inverse problem solution algorithm using compu-
ter simulated sensor activation times as data has demonstrated limits on
the accuracy of the proposed fire detection system. The evaluation focused
on the ability of the proposed fire detection system to locate and size
accidental fires when systematic model errors in the forward problem
solution and random measurement errors in the fire data were present. In
particular, the evaluation showed that the accuracy of the inverse
algorithm’s location predictions was affected by the accuracy of the
measurements of sensor activation times, but was not affected by the
accuracy of the forward problem model. In contrast the accuracy of the
inverse algorithm’s heat release rate predictions was affected by both the
accuracy of sensor activation time measurements and by the accuracy of
the forward problem model. The effect of random errors in sensor
activation time measurements was to widen the distribution of heat
release rate error ratios. The effect of systematic errors in the forward
problem solution was to shift the peak of the heat release rate error ratio
distribution away from unity. The strong effect of model error on heat
release rate predictions and the lack of any effect of model error on
location predictions make the task of determining the heat release rate of
a fire more challenging and more subject to error than the task of locating
a fire.

An evaluation of the inverse problem solution algorithm using fire data
interpolated from experimental measurements taken in a large-scale test
burn, was compared to the evaluation relying on computer simulated fire
data. Results of the two evaluations were shown to be similar to one
another, when random and systematic errors of appropriate magnitude
were applied to the simulated data. The comparison demonstrates the
validity of the use of computer simulated data in the evaluation of the
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inverse problem solution algorithm, as long as the simulated data
incorporates realistic levels of error.

The evaluation of the inverse problem solution algorithm using interpo-
lated fire data also indicated the level of accuracy that could be expected
of the proposed fire detection system operating in a large scale industrial
environment. The inverse problem solution algorithm was able to locate
most fires within one-third of the distance between sensors and 95% of all
fires within two-thirds of the distance between sensors. The algorithm was
able to determine the heat rclease rate of most fires to within a factor of
three and the heat release rate of 95% of all fires to within a factor of five.
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